

A 12*(1+|R|/(4m))-speed algorithm for
scheduling constrained-deadline sporadic
real-time tasks on a multiprocessor
comprising m processors where a task may
request one of |R| sequentially-reusable
shared resources

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100201

Version:

Date: 02-03-2010

Björn Andersson

Arvind Easwaran

Technical Report HURRAY-TR-100201 A 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sp

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline
sporadic real-time tasks on a multiprocessor comprising m processors where
a task may request one of |R| sequentially-reusable shared resources

Björn Andersson, Arvind Easwaran

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
We present a 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sporadic real-time tasks on a
multiprocessor comprising m processors where a task may request one of |R| sequentially-reusable shared resources.

A 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sporadic
real-time tasks on a multiprocessor comprising m processors where a task may

request one of |R| sequentially-reusable shared resources

Björn Andersson and Arvind Easwaran
CISTER-ISEP Research Centre

Polytechnic Institute of Porto, Portugal
{bandersson,aen}@dei.isep.ipp.pt

Abstract
We present a 12*(1+|R|/(4m))-speed algorithm for

scheduling constrained-deadline sporadic real-time
tasks on a multiprocessor comprising m processors
where a task may request one of |R| sequentially-
reusable shared resources.

1. Introduction
Consider the problem of preemptively scheduling a task

set τ of n constrained-deadline sporadic tasks (τ1 to τn) on m
identical processors (P1 to Pm). A task generates a
(potentially infinite) sequence of jobs, occurring at least Ti
time units apart. A job by τi requires up to Ci units of
execution over the next Di time units after its arrival (with
Ti, Di, Ci) being real numbers and 0 ≤ Ci ≤ Di ≤ Ti. A
processor executes at most one job at a time and no job may
execute on multiple processors simultaneously.

There is a set R of |R| resources. These resources are not
processors; instead they are shared resources (for example
shared I/O devices or shared data structures) which a task
needs in addition to a processor for execution of part of its
execution, typically for performing an operation on the
resource. We assume that a task may request a resource; the
resource request may be granted at that time or later, and
then the task may release the resource. We say that a task
which has been granted a resource holds the resource until
the task has released the resource. We assume that a job of
task τi may perform at most one request for a resource in R.
Let rk denote a resource; clearly we have rk∈R. We let Ci

k
denote the amount of units of execution that a job of task τi
needs to execute with resource rk from when the time that
the request was granted until the task released the resource.

We assume that resources must be held under mutual
exclusion, that is, it is not allowed that two different jobs
hold the same resource simultaneously. We make no
assumption where in the execution of a job that the request
for a resource is made; for example we allow for the
possibility that one job of task τi requests a resource rk in the
beginning of its execution but another job of task τi requests
a resource rk in the end of its execution. Since a job can
make only a single request for a resource, it clearly follows

that nested resource requests cannot occur. Clearly, a task
whose resource request is not granted cannot execute; it
must wait and during those time units until the task gets
granted the resource, the task does not perform any units of
execution.

We will find it useful to speak about the speed of a
processor. For a processor of speed s, it holds that if a task
executes for L time units on this processor then the task
completes s*L units of execution. As an illustration, if a job
of task τi executes for Ci/s time units on a processor of
speed s then it completes Ci units of execution and hence
the job finishes. Note that this concept of speed also applies
to resources: if a job of task τi has just been granted
resource rk and this job executes for Ci

k/s time units on a
processor of speed s then it completes Ci

k units of execution
and hence the request of the job for resource rk finishes.

The research literature has made available several
solutions for this problem. For a single processor system,
the protocols PCP [1] and SRP [2] together with RM [3]
and EDF [3] provide very good performance in terms of
being able to guarantee that deadlines are met before run-
time (schedulability). They use a scheduling algorithm that
originally was designed for tasks which do not share
resources and these works augment such an algorithm with
a resource-sharing protocol which changes the priority of a
task when certain events occur that are related to resource
sharing (for example, a resource request is not immediately
granted). For a multiprocessor system, solutions have been
developed for which it is possible to prove before run-time
that deadlines will be met. But no such solution with
provably good performance (in terms of having been
proven to have a finite competitive ratio) is known. We say
that an algorithm A has competitive ratio CPTA if, for every
task set τ for which it is possible to meet deadlines, it holds
that if the speed of processors are multiplied by CPTA then
algorithm A will meet deadlines as well. We also say, as a
shorthand expression, that an algorithm A with competitive
ratio CPTA is a CPTA-speed algorithm.

We believe that the current non-existence of
multiprocessor real-time scheduling algorithms with
resource sharing with finite competitive ratio suggests that

the problem of multiprocessor real-time scheduling with
resource sharing is currently not well understood and
because of its practical significance (multicore processors
are becoming commonplace now and resource sharing may
potentially limit the use of its parallel processing units), it
ought to be understood better.

Therefore, in this paper, we present a new algorithm
(called gEDF-vpr) for scheduling real-time tasks which
share resources. The new algorithm has competitive ratio
12*(1+|R|/(4m)).

The main idea of the new algorithm is as follows. We
use m processors to emulate 2m+|R| virtual processors.
There are m virtual processors of type-1; there are |R|
processors of type-2 and there are m processors of type-3.
The time window from the arrival of a job until its absolute
deadline can be split into three equal-length sub-windows.
The first sub-window is used for execution without a
resource and before a resource request has been made; this
execution is done on virtual processors of type-1. The
second sub-window is used for execution when a resource
is requested and this request has not yet been completed;
this execution is done on virtual processors of type-2. The
third sub-window is used for execution without a resource
and after a resource request has been completed. The
benefit of this approach is that the scheduling problem with
resource sharing (and particularly its analysis) can be
simplified by decomposing it into three scheduling
problems where resource sharing does not exist (which is
the case on type-1 and type-3) or where resource sharing
exist but it is easier to deal with (which is the case on type-2
where each virtual processor serves its dedicated resource).

Since we want to prove that the new algorithm has a
competitive ratio of 12*(1+|R|/(4m)), it follows that for such
a proof, we only need to consider task sets where for each
task τi it holds that Ci/min(Di, Ti)≤1/(12*(1+|R|/(4m)))*s and
if it requests resource k then it also holds that for
Ci

k/min(Di, Ti) ≤1/(12*(1+|R|/(4m)))*s, where s is the speed
of the processors used by gEDF-vpr.

We believe this result is interesting because last
Dagstuhl seminar on scheduling (in 2008) stressed
multiprocessor scheduling with shared resources as an open
problem [4]. We also believe it may be interesting at this
upcoming Dagstuhl scheduling seminar 2010 to discuss
possible ways to (i) attain greater performance and (ii)
eliminate the factor |R| in the expression of the competitive
ratio. We also hope it will stimulate discussions (between
real-time/operations research/theoretical computer science
communities) on the design of suitable frameworks for
multiprocessor scheduling with resource sharing.

The remainder of this paper is organized as follows.
Section 2 presents the new algorithm. Section 3 presents
notation and results we will use. Section 4 presents the
proof of the competitive ratio of the new algorithm.

2. The new algorithm
We call this algorithm gEDF-vpr. This algorithm is only

defined for task sets where for each task τi it holds that
Ci/min(Di, Ti) ≤1/(12*(1+|R|/(4m)))*s and if it requests
resource k then it also holds that for Ci/min(Di, Ti)
≤1/(12*(1+|R|/(4m)))*s, where s is the speed of the
processors used by gEDF-vpr. If gEDF-vpr is used on task
sets for which these conditions are not true, then the
algorithm declares failure and this should be interpreted as
that gEDF-vpr caused a deadline miss.

Figure 1 illustrates the main idea of gEDF-vpr. The
main idea is to use m processors to emulate a larger number
of virtual processors. These virtual processors are
partitioned into different types and a certain type serves a
certain phase of the execution of a job.

By using m processors of speed 1, we can emulate
2m+|R| virtual processors, specifically these ones:

1. m virtual processors of speed 2m/(4m+|R|) and
2. |R| virtual processors of speed m/(4m+|R|) and
3. m virtual processors of speed 2m/(4m+|R|)

We say that a virtual processor is either of type-1, type-2
or type-3 respectively. We give them indices so that

virtual processors of type 1 are given identifiers 1..m and
virtual processors of type 2 are given identifiers

m+1..m+|R| and
virtual processors of type 3 are given identifiers

m+|R|+1..2m+|R|.
A task τi is at every instant assigned to exactly one

phase. When a job arrives, the job is assigned phase-1. Di/3
time units later, it is assigned phase-2. Additional Di/3 time
units later, it is assigned phase-3 and it is supposed to (in
order to meet deadlines) to finish execution within Di/3.

A task performing no resource request is only in phase-1
and executes only on virtual processors of type-1. For tasks
which make resource requests, the following apply:

- A task τi which is in phase-1 is ready for execution
only if it has not yet made a resource-access
request.

- A task τi which is in phase-2 is ready for execution
only if its resource access has not yet been granted
and completed.

- A task τi which is in phase-3 is ready for execution
only if it has remaining unfinished execution to
perform.

We schedule (i) all phase-1 tasks onto virtual processors
of type-1 using gEDF with the absolute deadline of task τi
being computed based on Di/3, (ii) a phase-2 task which
request resource rk is assigned virtual processor m+k and
non-preemptive EDF scheduling is used there with the
absolute deadline of task τi being computed based on Di/3
and (iii) all phase-3 tasks onto processors of type-3 using
gEDF with the absolute deadline of task τi being computed
based on Di/3.

 physical processors virtual processors

VPm+|R|+1P1 VP1

VPm+1

VPm+2

VP m+|R|+2P2 VP2

VP m+|R|+3P3 VP3
…

… … …
VPm+|R|

VPm+|R|+mPm VPm

(a) Virtual processors of lower speed are formed out of physical processors.

b) Different phases of a execution of a job are dispatched on different virtual processors.

Figure 1. An illustration of the new algorithm gEDF-vpr.

A job of task
τi arrives

deadline of
the job

t t+Di/3 t+2Di/3 t+Di

The job is
scheduled
by global-
EDF

3. Notations and Results we will use
We let sched(A, τ, m, s) denote a predicate meaning that

the task set τ meets all deadlines when scheduled by

algorithm A on m processors of speed s. The term “meets
deadlines” here should be interpreted as “meet deadlines for
every possible arrival of tasks which is possible as given by
the parameters of the task set τ”.

time

on virtual
processors
VP1,
VP2
…,
VPm
until it
requests a
resource.

If the job
is
requesting
resource rk
then it is
scheduled
with non-
preemptiv
e EDF on
processor
VPm+k.

The job is
scheduled
by global-
EDF
on virtual
processors
VPm+|R|+1,
VPm+|R|+2
…,

until it
releases
the
resource

VPm+|R|+m

We let TD(τ) denote a function which takes a task set τ
as parameter and outputs a task set which differs from τ
only in that for each task τi in TD(τ), the parameter Di is one
third of the parameter Di of the its corresponding task in τ.

We let TD1(τ) denote a function which takes a task set τ
as parameter and outputs a task set which differs from τ
only in that for each task τi in TD1(τ), the parameter Di is
one third of the parameter Di of the its corresponding task in
τ and we also set Ci

k=0 for every resource.
We let TD2(τ) denote a function which takes a task set τ

as parameter and outputs a task set which differs from τ
only in that for each task τi in TD2(τ), the parameter Di is
one third of the parameter Di of the its corresponding task in
τ and we also set Ci=Ci

k, where k is the resource that task τi
may request.

We let TD3(τ) denote a function which takes a task set τ
as parameter and outputs the a task set which differs from τ
only in that for each task τi in TD3(τ), the parameter Di is
one third of the parameter Di of the its corresponding task in
τ and we also set Ci

k=0 for every resource.
It can be noted that TD1(τ) is identical to TD3(τ) so one

of these definitions is actually redundant. We choose to
define both of them however because we will use both of
them in different context (in Section 4) when we prove the
competitive ratio of a new algorithm. We can also
intuitively understand the meaning of “TD” as “one ThirD”.

We know from Theorem 2.2 in [5] that if it is possible to
meet deadlines then gEDF meets deadlines as well if
provided processors that are twice as fast.

4. Proving the competitive ratio of the new
algorithm

Clearly, we have:
(∃A: sched(A, τ, m, 1))
⇒
(∃A: sched(A, TD(τ), m, 3)) (1)

because processors that are three times as fast makes it
possible to meet deadlines that are one third of the deadlines
of the original task set.

We also have:

(∃A: sched(A, TD(τ), m, 3))
⇒
(∃A: sched(A, TD1(τ), m, 3)) (2)

because the right hand side reduces the demand on
resources.

We also have:

(∃A: sched(A, TD(τ), m, 3))
⇒
(∃A: sched(A, TD2(τ), m, 3)) (3)

because the right hand side reduces the demand on
processors.

We also have:

(∃A: sched(A, TD(τ), m, 3))
⇒
(∃A: sched(A, TD3(τ), m, 3)) (4)

because the right hand side reduces the demand on
resources.

We can apply Theorem 2.2 from [5] on type-1 and typ-3

and we can also observe that on each processor of type-2
we perform non-preemptive EDF which is as good as is
possible. Therefore, we have:

(∃A: sched(A, TD1(τ), m, 3))
⇒
sched(gEDF, TD1(τ), m, 6) (5)

and

 (∃A: sched(A, TD2(τ), m, 3))
⇒
sched(

non-preemptive-EDF-on-each-processor-
where-a-task-is-assigned-to-a-processor-
based-on-the-resource-it-requests, TD2(τ),|R|,
3) (6)

and

(∃A: sched(A, TD3(τ), m, 3))
⇒
sched(gEDF, TD3(τ), m, 6) (7)

Combining (1)-(7) gives us:

(∃A: sched(A, τ, m, 1))
⇒
sched(gEDF, TD1(τ), m, 6) (8)

and

(∃A: sched(A, τ, m, 1))
⇒
sched(non-preemptive-EDF-on-each-processor

-where-a-task-is-assigned-to-a-processor
-based-on-the-resource-it-requests,
TD2(τ),|R|, 3) (9)

and

(∃A: sched(A, τ, m, 1))
⇒
sched(gEDF, TD3(τ), m, 6) (10)

Specifically, the equation (8) is obtained by combining

(1), (2), (5). The equation (9) is obtained by combining (1),
(3), (6). The equation (10) is obtained by combining (1),
(4), (7).

Multiplying the processor speeds of (8),(9) and (10) by

m/(12m+3|R|) gives us:

(∃A: sched(A, τ, m, m/(12m+3|R|)))
⇒
sched(gEDF, TD1(τ), m, 2m/(4m+|R|)) (11)

and

(∃A: sched(A, τ, m, m/(12m+3|R|)))
⇒
sched(non-preemptive-EDF-on-each-processor

-where-a-task-is-assigned-to-a-processor-
based-on-the-resource-it-requests, TD2(τ),|R|,
m/(4m+|R|)) (12)

and

(∃A: sched(A, τ, m, m/(12m+3|R|)))
⇒
sched(gEDF, TD3(τ), m, 2m/(4m+|R|)) (13)

Consider now the right-hand sides of (11),(12),(13).

They state that deadlines are met when the new algorithm is
used and they consider each processor type. Therefore, we
have:

(∃A: sched(A, τ, m, m/(12m+3|R|)))
⇒
sched(gEDF-vpr, τ, m, 1) (14)

Multiplying the processor speed by (12m+3|R|)/m and

rewriting gives us:

(∃A: sched(A, τ, m, 1)
⇒

sched(gEDF-vpr, τ, m, 12*(1+|R|/4m)) (15)

This states the competitive ratio of the algorithm

gEDF-vpr.

References
[1] L. Sha, R. Rajkumar and J. P. Lehoczky, Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE
Transactions on Computers, September 1990, pp. 1175-1185.
[2] T. P. Baker, Stack-based Scheduling of Realtime Processes. Real-
Time Systems 3(1): 67-99 (1991)
[3] C. L. Liu and J. W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Journal of the
ACM (JACM), Volume 20 , Issue 1 (January 1973), Pages: 46 – 61,
1973.
[4]
http://www.dagstuhl.de/Materials/Files/08/08071/08071.BaruahSanjo
y.Abstract.txt
[5] C. A. Phillips, C. Stein, E. Torng, J. Wein, “Optimal time-critical
scheduling via resource augmentation”, Proceedings of the twenty-
ninth annual ACM symposium on Theory of Computing, El Paso,
Texas, United States, Pages: 140 – 149, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

