
  

 

 

 

 

 

 

A 12*(1+|R|/(4m))-speed algorithm for 
scheduling constrained-deadline sporadic 
real-time tasks on a multiprocessor 
comprising m processors where a task may 
request one of |R| sequentially-reusable 
shared resources 

 

 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-100201 

Version:  

Date: 02-03-2010 

Björn Andersson 

Arvind Easwaran 



Technical Report HURRAY-TR-100201 A 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sp

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 

A 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline 
sporadic real-time tasks on a multiprocessor comprising m processors where 
a task may request one of |R| sequentially-reusable shared resources 

Björn Andersson, Arvind Easwaran 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 

Abstract 
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multiprocessor comprising m processors where a task may request one of |R| sequentially-reusable shared resources. 
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Abstract 
We present a 12*(1+|R|/(4m))-speed algorithm for 

scheduling constrained-deadline sporadic real-time 
tasks on a multiprocessor comprising m processors 
where a task may request one of |R| sequentially-
reusable shared resources. 

1. Introduction 
Consider the problem of preemptively scheduling a task 

set τ of n constrained-deadline sporadic tasks (τ1 to τn) on m 
identical processors (P1 to Pm). A task generates a 
(potentially infinite) sequence of jobs, occurring at least Ti 
time units apart. A job by τi requires up to Ci units of 
execution over the next Di time units after its arrival (with 
Ti, Di, Ci) being real numbers and 0 ≤ Ci ≤ Di ≤ Ti. A 
processor executes at most one job at a time and no job may 
execute on multiple processors simultaneously. 

There is a set R of |R| resources. These resources are not 
processors; instead they are shared resources (for example 
shared I/O devices or shared data structures) which a task 
needs in addition to a processor for execution of part of its 
execution, typically for performing an operation on the 
resource. We assume that a task may request a resource; the 
resource request may be granted at that time or later, and 
then the task may release the resource. We say that a task 
which has been granted a resource holds the resource until 
the task has released the resource. We assume that a job of 
task τi may perform at most one request for a resource in R. 
Let rk denote a resource; clearly we have rk∈R. We let Ci

k 
denote the amount of units of execution that a job of task τi 
needs to execute with resource rk from when the time that 
the request was granted until the task released the resource. 

We assume that resources must be held under mutual 
exclusion, that is, it is not allowed that two different jobs 
hold the same resource simultaneously. We make no 
assumption where in the execution of a job that the request 
for a resource is made; for example we allow for the 
possibility that one job of task τi requests a resource rk in the 
beginning of its execution but another job of task τi requests 
a resource rk in the end of its execution. Since a job can 
make only a single request for a resource, it clearly follows 

that nested resource requests cannot occur. Clearly, a task 
whose resource request is not granted cannot execute; it 
must wait and during those time units until the task gets 
granted the resource, the task does not perform any units of 
execution. 

We will find it useful to speak about the speed of a 
processor. For a processor of speed s, it holds that if a task 
executes for L time units on this processor then the task 
completes s*L units of execution. As an illustration, if a job 
of task τi executes for Ci/s time units on a processor of 
speed s then it completes Ci units of execution and hence 
the job finishes. Note that this concept of speed also applies 
to resources: if a job of task τi has just been granted 
resource rk and this job executes for Ci

k/s time units on a 
processor of speed s then it completes Ci

k units of execution 
and hence the request of the job for resource rk finishes. 

The research literature has made available several 
solutions for this problem. For a single processor system, 
the protocols PCP [1] and SRP [2] together with RM [3] 
and EDF [3] provide very good performance in terms of 
being able to guarantee that deadlines are met before run-
time (schedulability). They  use a scheduling algorithm that 
originally was designed for tasks which do not share 
resources and these works augment such an algorithm with 
a resource-sharing protocol which changes the priority of a 
task when certain events occur that are related to resource 
sharing (for example, a resource request is not immediately 
granted). For a multiprocessor system, solutions have been 
developed for which it is possible to prove before run-time 
that deadlines will be met. But no such solution with 
provably good performance (in terms of having been 
proven to have a finite competitive ratio) is known. We say 
that an algorithm A has competitive ratio CPTA if, for every 
task set τ for which it is possible to meet deadlines, it holds 
that if the speed of processors are multiplied by CPTA then 
algorithm A will meet deadlines as well. We also say, as a 
shorthand expression, that an algorithm A with competitive 
ratio CPTA is a CPTA-speed algorithm. 

We believe that the current non-existence of 
multiprocessor real-time scheduling algorithms with 
resource sharing with finite competitive ratio suggests that 



the problem of multiprocessor real-time scheduling with 
resource sharing is currently not well understood and 
because of its practical significance (multicore processors 
are becoming commonplace now and resource sharing may 
potentially limit the use of its parallel processing units), it 
ought to be understood better. 

Therefore, in this paper, we present a new algorithm 
(called gEDF-vpr) for scheduling real-time tasks which 
share resources. The new algorithm has competitive ratio 
12*(1+|R|/(4m)).  

The main idea of the new algorithm is as follows. We 
use m processors to emulate 2m+|R| virtual processors. 
There are m virtual processors of type-1; there are |R| 
processors of type-2 and there are m processors of type-3. 
The time window from the arrival of a job until its absolute 
deadline can be split into three equal-length sub-windows. 
The first sub-window is used for execution without a 
resource and before a resource request has been made; this 
execution is done on virtual processors of type-1. The 
second sub-window is used for execution when a resource 
is requested and this request has not yet been completed; 
this execution is done on virtual processors of type-2. The 
third sub-window is used for execution without a resource 
and after a resource request has been completed. The 
benefit of this approach is that the scheduling problem with 
resource sharing (and particularly its analysis) can be 
simplified by decomposing it into three scheduling 
problems where resource sharing does not exist (which is 
the case on type-1 and type-3) or where resource sharing 
exist but it is easier to deal with (which is the case on type-2 
where each virtual processor serves its dedicated resource). 

Since we want to prove that the new algorithm has a 
competitive ratio of 12*(1+|R|/(4m)), it follows that for such 
a proof, we only need to consider task sets where for each 
task τi it holds that Ci/min(Di, Ti)≤1/(12*(1+|R|/(4m)))*s and 
if it requests resource k then it also holds that for  
Ci

k/min(Di, Ti) ≤1/(12*(1+|R|/(4m)))*s, where s is the speed 
of the processors used by gEDF-vpr. 

We believe this result is interesting because last 
Dagstuhl seminar on scheduling (in 2008) stressed 
multiprocessor scheduling with shared resources as an open 
problem [4]. We also believe it may be interesting at this 
upcoming Dagstuhl scheduling seminar 2010 to discuss 
possible ways to (i) attain greater performance and (ii) 
eliminate the factor |R| in the expression of the competitive 
ratio. We also hope it will stimulate discussions (between 
real-time/operations research/theoretical computer science 
communities) on the design of suitable frameworks for 
multiprocessor scheduling with resource sharing. 

The remainder of this paper is organized as follows.  
Section 2 presents the new algorithm. Section 3 presents 
notation and results we will use. Section 4 presents the 
proof of the competitive ratio of the new algorithm. 

2. The new algorithm 
We call this algorithm gEDF-vpr. This algorithm is only 

defined for task sets where for each task τi it holds that 
Ci/min(Di, Ti) ≤1/(12*(1+|R|/(4m)))*s and if it requests 
resource k then it also holds that for Ci/min(Di, Ti) 
≤1/(12*(1+|R|/(4m)))*s, where s is the speed of the 
processors used by gEDF-vpr. If gEDF-vpr is used on task 
sets for which these conditions are not true, then the 
algorithm declares failure and this should be interpreted as 
that gEDF-vpr caused a deadline miss. 

Figure 1 illustrates the main idea of  gEDF-vpr. The 
main idea is to use m processors to emulate a larger number 
of virtual processors. These virtual processors are 
partitioned into different types and a certain type serves a 
certain phase of the execution of a job. 

By using m processors of speed 1, we can emulate 
2m+|R| virtual processors, specifically these ones: 

1. m virtual processors of speed 2m/(4m+|R|) and 
2. |R| virtual processors of speed m/(4m+|R|) and 
3. m virtual processors of speed 2m/(4m+|R|) 

We say that a virtual processor is either of type-1, type-2 
or type-3 respectively. We give them indices so that 

virtual processors of type 1 are given identifiers 1..m and 
virtual processors of type 2 are given identifiers 

m+1..m+|R| and 
virtual processors of type 3 are given identifiers 

m+|R|+1..2m+|R|. 
A task τi is at every instant assigned to exactly one 

phase. When a job arrives, the job is assigned phase-1. Di/3 
time units later, it is assigned phase-2. Additional Di/3 time 
units later, it is assigned phase-3 and it is supposed to (in 
order to meet deadlines) to finish execution within Di/3. 

A task performing no resource request is only in phase-1 
and executes only on virtual processors of type-1. For tasks 
which make resource requests, the following apply: 

- A task τi which is in phase-1 is ready for execution 
only if it has not yet made a resource-access 
request. 

- A task τi which is in phase-2 is ready for execution 
only if its resource access has not yet been granted 
and completed. 

- A task τi which is in phase-3 is ready for execution 
only if it has remaining unfinished execution to 
perform. 

We schedule (i) all phase-1 tasks onto virtual processors 
of type-1 using gEDF with the absolute deadline of task τi  
being computed based on  Di/3, (ii) a phase-2 task which 
request resource rk is assigned virtual processor m+k and 
non-preemptive EDF scheduling is used there with the 
absolute deadline of task τi being computed based on Di/3 
and (iii) all phase-3 tasks onto processors of type-3 using 
gEDF with the absolute deadline of task τi being computed 
based on Di/3. 
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(a) Virtual processors of lower speed are formed out of physical processors. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Different phases of a execution of a job are dispatched on different virtual processors. 
 

Figure 1. An illustration of the new algorithm gEDF-vpr. 
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We let TD(τ) denote a function which takes a task set τ 
as parameter and outputs a task set which differs from  τ 
only in that for each task τi in TD(τ), the parameter Di is one 
third of the parameter Di of the its corresponding task in τ. 

We let TD1(τ) denote a function which takes a task set τ 
as parameter and outputs a task set which differs from  τ 
only in that for each task τi in TD1(τ), the parameter Di is 
one third of the parameter Di of the its corresponding task in 
τ and we also set Ci

k=0 for every resource. 
We let TD2(τ) denote a function which takes a task set τ 

as parameter and outputs a task set which differs from  τ 
only in that for each task τi in TD2(τ), the parameter Di is 
one third of the parameter Di of the its corresponding task in 
τ and we also set Ci=Ci

k, where k is the resource that task τi 
may request. 

We let TD3(τ) denote a function which takes a task set τ 
as parameter and outputs the a task set which differs from  τ 
only in that for each task τi in TD3(τ), the parameter Di is 
one third of the parameter Di of the its corresponding task in 
τ and we also set Ci

k=0 for every resource. 
It can be noted that TD1(τ)  is identical to TD3(τ) so one 

of these definitions is actually redundant. We choose to 
define both of them however because we will use both of 
them in different context (in Section 4) when we prove the 
competitive ratio of a new algorithm. We can also 
intuitively understand the meaning of “TD” as “one ThirD”. 

We know from Theorem 2.2 in [5] that if it is possible to 
meet deadlines then gEDF meets deadlines as well if 
provided processors that are twice as fast. 

4. Proving the competitive ratio of the new 
algorithm 

Clearly, we have: 
(∃A: sched( A, τ, m, 1))  
⇒ 
(∃A: sched( A, TD(τ), m, 3))    (1) 

because processors that are three times as fast makes it 
possible to meet deadlines that are one third of the deadlines 
of the original task set. 

 
 
 
We also have: 

(∃A: sched( A, TD(τ), m, 3)) 
⇒ 
(∃A: sched( A, TD1(τ), m, 3))    (2) 

because the right hand side reduces the demand on 
resources. 

 
We also have: 

(∃A: sched( A, TD(τ), m, 3)) 
⇒ 
(∃A: sched( A, TD2(τ), m, 3))    (3) 

because the right hand side reduces the demand on 
processors. 

 
We also have: 

(∃A: sched( A, TD(τ), m, 3)) 
⇒ 
(∃A: sched( A, TD3(τ), m, 3))    (4) 

because the right hand side reduces the demand on 
resources. 

 
 
 
We can apply Theorem 2.2 from [5] on type-1 and typ-3 

and we can also observe that on each processor of type-2 
we perform non-preemptive EDF which is as good as is 
possible. Therefore, we have: 

 
(∃A: sched( A, TD1(τ), m, 3))  
⇒ 
sched( gEDF, TD1(τ), m, 6)    (5) 

 
and 

 (∃A: sched( A, TD2(τ), m, 3))  
⇒ 
sched( 

non-preemptive-EDF-on-each-processor-
where-a-task-is-assigned-to-a-processor-
based-on-the-resource-it-requests, TD2(τ),|R|, 
3)         (6) 

 
and 
 

(∃A: sched( A, TD3(τ), m, 3))  
⇒ 
sched( gEDF, TD3(τ), m, 6)    (7) 

 
 
 
Combining (1)-(7) gives us: 
 

(∃A: sched( A, τ, m, 1))  
⇒ 
sched( gEDF, TD1(τ), m, 6)    (8) 

 
and 
 

(∃A: sched( A, τ, m, 1))  
⇒ 
sched( non-preemptive-EDF-on-each-processor 

-where-a-task-is-assigned-to-a-processor 
-based-on-the-resource-it-requests, 
TD2(τ),|R|, 3)       (9) 

 



and 
 
(∃A: sched( A, τ, m, 1))  
⇒ 
sched( gEDF, TD3(τ), m, 6)     (10) 
 
Specifically, the equation (8) is obtained by combining 

(1), (2), (5). The equation (9) is obtained by combining (1), 
(3), (6). The equation (10) is obtained by combining (1), 
(4), (7). 

 
 
 
Multiplying the processor speeds of (8),(9) and (10) by 

m/(12m+3|R|) gives us: 
 

(∃A: sched( A, τ, m, m/(12m+3|R|)))  
⇒ 
sched( gEDF, TD1(τ), m, 2m/(4m+|R|))  (11) 

 
and 
 

(∃A: sched( A, τ, m, m/(12m+3|R|)))  
⇒ 
sched( non-preemptive-EDF-on-each-processor 

-where-a-task-is-assigned-to-a-processor-
based-on-the-resource-it-requests, TD2(τ),|R|, 
m/(4m+|R|))       (12) 

 
and 
 

(∃A: sched( A, τ, m, m/(12m+3|R|)))  
⇒ 
sched( gEDF, TD3(τ), m, 2m/(4m+|R|))  (13) 

 
 
 
Consider now the right-hand sides of (11),(12),(13). 

They state that deadlines are met when the new algorithm is 
used and they consider each processor type. Therefore, we 
have: 

 
 

(∃A: sched( A, τ, m, m/(12m+3|R|)))  
⇒ 
sched( gEDF-vpr, τ, m, 1)     (14) 

 
 
Multiplying the processor speed by (12m+3|R|)/m and 

rewriting gives us: 
 

(∃A: sched( A, τ, m, 1 )  
⇒ 

sched( gEDF-vpr, τ, m, 12*(1+|R|/4m))  (15) 
 
This states the competitive ratio of the algorithm 

gEDF-vpr. 
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